Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil.
نویسندگان
چکیده
We compared the reactivity and microbial reduction potential of Fe(III) minerals in the rhizosphere and non-rhizosphere soil to test the hypothesis that rapid Fe(III) reduction rates in wetland soils are explained by rhizosphere processes. The rhizosphere was defined as the area immediately adjacent to a root encrusted with Fe(III)-oxides or Fe plaque, and non-rhizosphere soil was >0.5 cm from the root surface. The rhizosphere had a significantly higher percentage of poorly crystalline Fe (66+/-7%) than non-rhizosphere soil (23+/-7%); conversely, non-rhizosphere soil had a significantly higher proportion of crystalline Fe (50+/-7%) than the rhizosphere (18+/-7%, P<0.05 in all cases). The percentage of poorly crystalline Fe(III) was significantly correlated with the percentage of FeRB (r=0.76), reflecting the fact that poorly crystalline Fe(III) minerals are labile with respect to microbial reduction. Abiotic reductive dissolution consumed about 75% of the rhizosphere Fe(III)-oxide pool in 4 h compared to 23% of the soil Fe(III)-oxide pool. Similarly, microbial reduction consumed 75-80% of the rhizosphere pool in 10 days compared to 30-40% of the non-rhizosphere soil pool. Differences between the two pools persisted when samples were amended with an electron-shuttling compound (AQDS), an Fe(III)-reducing bacterium (Geobacter metallireducens), and organic carbon. Thus, Fe(III)-oxide mineralogy contributed strongly to differences in the Fe(III) reduction potential of the two pools. Higher amounts of poorly crystalline Fe(III) and possibly humic substances, and a higher Fe(III) reduction potential in the rhizosphere compared to the non-rhizosphere soil, suggested the rhizosphere is a site of unusually active microbial Fe cycling. The results were consistent with previous speculation that rapid Fe cycling in wetlands is due to the activity of wetland plant roots.
منابع مشابه
The Effect of Fruit Trees Pruning Waste Biochar on some Soil Biological Properties under Rhizobox Conditions
The pyrolysis of fruit trees Pruning waste to be converted to biochar with microbial inoculation is a strategy improving the biological properties in calcareous soils. In order to investigate the biochar effect on some soil biological properties of the soil in the presence of microorganisms, a factorial experiment was carried out in a completely randomized design in the rhizobox under greenhous...
متن کاملRhizosphere Iron (III) Deposition and Reduction in a Juncus effusus L.-Dominated Wetland
soil and rates of radial oxygen loss. Radial O2 loss is in turn influenced by plant activity (Bedford et al., 1991; Iron (III) plaque forms on the roots of wetland plants from the Kuehn and Suberkropp, 1998) and morphological charreaction of Fe(II) with O2 released by roots. Recent laboratory studies acteristics such as suberized and lignified roots (Armhave shown that Fe plaque is more rapidly...
متن کاملEnumeration of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the root zone of wetland plants: Implications for a rhizosphere iron cycle
Iron plaque occurs on the roots of most wetland and submersed aquatic plant species and is a large pool of oxidized Fe(III) in some environments. Because plaque formation in wetlands with circumneutral pH has been largely assumed to be an abiotic process, no systematic effort has been made to describe plaque-associated microbial communities or their role in plaque deposition. We hypothesized th...
متن کاملارزیابی تأثیر تلقیح کرم خاکی Eisenia foetida و کاربرد مواد آلی مختلف بر برخی شاخصهای کیفیت بیولوژیک خاک در شرایط گلخانهای
Earthworms are considered as one of the soil quality and health indicators. In order to evaluate the effects of earthworms activity on some soil biological quality indicators, an experiment was carried out in greenhouse conditions with different organic materials including trees’ pruning waste compost (PWC), wheat straw (WS), herbal extracts waste (HEW), trees’ pruning waste (PW) in...
متن کاملCultivation Effect of Chitinase-Transgenic Cotton on Functional Bacteria and Fungi in Rhizosphere and Bulk Soil
Background: In consideration for the increasing widespread use of genetically modified (GM) crops, one of the important issues for assessment is the effect of GM crops on soil microbial communities Objectives: In this study, T2 chitinase-transgenic cotton (line #57) and its non-transgenic line were investigated for bacterial and fungal dynamics...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology ecology
دوره 48 1 شماره
صفحات -
تاریخ انتشار 2004